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A method based on the dynamic Green function has been proposed to determine the
optimum values of masses and/or springs and their locations on a beam structure in order to
con"ne the vibration at an arbitrary location. In the analysis, the beam is driven by
a harmonic external excitation. The added masses on the beam and the springs attached are
modelled as simple reactions that provide transverse forces to the beam. These forces act as
secondary forces that reduce the response caused by the external force. Numerical
simulation shows that the vibration of the beam can be con"ned in a certain region by the
presence of masses and springs in best arrangement. This method is demonstrated for both
a simply supported and a cantilever beam. An experimental set-up was designed in which
a simply supported beam is excited by an electrodynamic shaker and the response of the
beam is measured using an He}Ne laser system. This assures very accurate measurements
and avoids any additional loading e!ects as in the case of accelerometers. Comparisons of
the theoretical and the experimental results show good agreement.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Many components in a mechanical system can be modelled as beams subjected to
disturbances resulting in a vibratory motion. If these beams are #exible and have low
inherent damping, the vibratory motion can last for a long time before it dies out. This
creates problems in the structural performance of these members. Vibrational con"nement
and control has evolved in order to improve structural performance. The ideas suggested
range from the use of passive control (utilizing added masses, springs, dampers, etc.) to the
use of active control with sophisticated control strategies (utilizing sensors, actuators,
feedback etc.).
In recent years, much attention has been placed on the vibrational con"nement and

control of #exible structures. In certain applications, it may be of interest to eliminate
vibration from one part of the structure more than another. Large #exible space structures,
for example, are usually built from lightweight materials with low damping, and will be very
#exible due to the thin large-size elements from which they are constructed. An excitation
source may cause vibrations that propagate throughout the structure. In such a case, it is
desirable to con"ne vibration in some chosen insensitive part while keeping other parts, for
instance an extremely sensitive antenna, relatively una!ected.
The purpose of this paper is to investigate the e!ect of added masses and/or springs on

beam vibration. A technique based on the dynamic Green function is developed to give the
best arrangement of masses and/or springs, for vibration con"nement in a certain part of
a sinusoidally driven beam. The optimum mass ratio is obtained at each external exciting
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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frequency. The e!ect of the input force on the magnitude of the suppressed vibration
amplitude is also investigated. Some of the objectives of the present work are similar to
those of Keltie and Cheng [1] who used a modal analysis approach to investigate the e!ects
of added masses on vibrational behavior of a simply supported beam and furthermore
utilized the results to control or reduce the vibration response. In their optimization
techniques, they considered only the mass locations as design parameters. Furthermore, the
vibration suppression region considered in their study was either on the left side or the right
side of the beam; no attempt was made to investigate the vibration reduction within
intermediate regions along the beam. In the present paper, a single mass or a spring is
attached to the beam at a prescribed location to maintain a signi"cantly small vibration
level at a particular location along the beam.
The determination of the natural frequencies and mode shapes of restrained beams with

springs and point masses attached has been investigated by many authors for various beam
boundary conditions [2}8]. In these references, numerical approaches such as the transfer
matrix method, "nite element method, analytical and numerical combined method as well
as pure analytical (closed form) solutions for a few special cases are adopted. For any kind
of boundary conditions, the exact natural frequencies and mode shapes for a beam with
attached point masses and/or springs can be obtained as a result of the present analysis.
Formulation of the solution for the present problem is done by utilizing the Green

functions. This method is exact, direct, short and elegant. This procedure was chosen for its
freedom from numerical inaccuracy when compared to standard application of modal series
techniques. Equally important, this procedure exhibits appreciably greater computational
e$ciency when compared with the modal analysis approach. Therefore, it can be used by
any engineer of a pragmatical nature without any di$culty.

2. FORMULATION

The problem to be considered is that of transverse vibration of a uniform elastic beam of
"nite length ¸ originally at rest with di!erent classical or unconventional boundary
conditions at x"0 and ¸, not shown in Figure 1. The beam is driven by a sinusoidal
external force and there are R point masses andN springs attached to the beam. The lateral
vibration of the beam is governed by the equation
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where EI, �, A, and w(x, t) denote, respectively, the #exural rigidity of the beam, the density,
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where� and x
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are the force frequency and force location, respectively, and �( ) ) is the Dirac

delta function.
The solution of equation (1) is assumed to be harmonic in time, thus

w (x, t)"=(x) ei��, (3)



Figure 1. A uniform beam with attached point masses and springs.
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and this reduces equation (1) to
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where

q�"�A��/EI. (5)

The dynamic Green function is utilized to "nd the solution for equation (4). Hence if G(x, u)
is the dynamic Green function, as yet unknown, for the stated problem, then the solution of
equation (3) takes the form
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Performing the integration one obtains
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where G(x, u) is the solution of the di!erential equation

d�/dx�G(x, u)!q�G(x, u)"� (x!u) (8)

The solution of equation (8) is assumed in the form reported in reference [9].
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�
are evaluated such that the Green function

G(x, u) satis"es the following conditions [10]: (1) two boundary conditions at each end of
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the beam depending on the type of end support; (2) transient conditions, namely continuity
conditions of displacement, slope and moment at x"u, i.e.,
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(c) shear force discontinuity of magnitude one at x"u, i.e.,
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For a simply supported beam, the Green function as determined by the above procedure is
given by
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and g(u, x) is obtained by switching x and u in g (x, u). This follows from the fact that G(x, u)
must be symmetric to satisfy the Maxwell}Rayleigh reciprocity law.
To this end, one evaluates the =(x) from equation (7) at all points of spring and mass
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�
and x"b
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These equations can be written concisely in matrix form
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and the matrix D"[I]#[B], where [I] is the identity matrix and the matrix [B] is
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TABLE 1

Experimental model parameters

Beam length Width Thickness Density Young's modulus
(m) (m) (m) (kg/m�) (N/m�)

0)75 0)03 0)003 7700 19)5�10

Figure 2. Experimental set-up.
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The unknown displacement vector �W� � can be obtained by solving the matrix equation
(14). One next substitutes the displacement vector �W� �into equation (7) to obtain the
de#ection at any point x in the beam. Speci"cally,
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It is worth observing that if one is interested in evaluating the natural frequencies of the
beam with mass and/or spring attachments, the determinant of the matrix [D] can be set
equal to zero to obtain a highly non-linear frequency equation involving transcendental
functions which can be solved by appropriate techniques.

3. EXPERIMENTAL SET-UP

In order to verify the analytical results, a set of experiments was conducted for the case of
a simply supported beam with adjustable point masses that can slide along the beam.
The system parameters and material properties are listed in Table 1. Figure 2 shows the
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Figure 3. Analytical displacement responses of the loaded and unloaded simply supported beam when
�"112 Hz, F

�
"20N, m

�
"0)065 kg at b

�
"0)1236 m. ------, Unloaded; **, loaded; �, mass location.

634 K. ALSAIF AND M. A. FODA
experimental set-up used in the experiment. The beam is loaded with a single mass of 0)065
kg located at x"0)1236 m as shown. The electrodynamic shaker provides a harmonic
input force to the beam at its mid-span. The force amplitude is kept constant at 20 N and
the frequency is varied. The steady state displacement response is measured at several points
along the beam using a laser transducer. A laser beam re#ector is attached at the points of
measurement and the re#ected signal is processed and connected to a frequency analyzer.
Unlike accelerometers, using a laser sensor, the mass-loading e!ect is eliminated. It should
mentioned that displacement measurements in the neighborhood of 10-�m can be made.

4. VERIFICATION OF THE MATHEMATICAL MODEL

Consider the simply supported beam described in the previous section. The analytical
solution of the dynamic displacement of the beam with an attached mass, 0)065 kg, at
location x"0)25 � (0)1236 m) with an input excitation frequency �"112 Hz can be
obtained from equation (21). The spatial wavelength of the #exural wave is �"2/k

�
, where

k
�
"q�
� is the wavenumber. Using Matlab software, the displacement response of the
beam is depicted in Figure 3. The "gure shows the response of the mass-loaded and the
unloaded beam. Figures 4 and 5 show the comparison between the numerical and
experimental steady state response of the mass-loaded and unloaded beam respectively. The
"gures indicate a good match between the two results. Therefore, the analytical model
reproduces the experimental results with acceptable accuracy.
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Figure 4. Comparison between experimental and analytical displacement responses of the loaded simply
supported beam when �"112 Hz, F
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Figure 5. Comparison between experimental and analytical displacement responses of the unloaded simply
supported beam when �"112 Hz, F

�
"20 N, x

�
"¸/2. �, Analytical; �, experimental.
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5. PARAMETRIC STUDY

With the con"dence gained from the comparison between Figures 4 and 5, a parametric
study using the developed analytical model has been conducted. Simply supported as well
as cantilevered beams are considered. The parameters selected for the simply supported
beam in the numerical simulations correspond to the data used in reference [1]. The beam
span ¸"20 m, modulus of elasticity E"19)5�10�� N/m�, thickness h"0)026458 m,
width b"1 m, and density �"7700 kg/m�. Therefore, the mass of the beam m

�
"4073 kg.

In all the "gures, the dashed lines represent the transverse displacement of the unloaded
beam (beam without attachments).



Figure 6. Analytical displacement responses of the loaded and unloaded simply supported beam when
�"20 Hz, F

�
"1000 N, x

�
"10 m, m

�
"410 kg at b

�
"4)3436 m. **, Loaded; ------, unloaded; �, mass

location.
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Figure 6 shows the dynamic response of the beam for a relatively low excitation frequency
�"20 Hz (compared to the fundamental natural frequency of the beam). The excitation
force amplitude F

�
"1000 N acts at the mid-span of the beam; x

�
"10 m. It is observed

that the smallest mass suppressing the vibration in the right half of the beam should be
attached in the left half at any peak or trough of the #exural displacement of the unloaded
beam. In the "gure, a single mass of 410 kg is attached at b

�
"4)3436 m which corresponds

to 1)25 �. If one is interested in controlling the vibration in the left half of the beam, a mass of
the same value should be attached in the right half instead as shown in Figure 7. It should be
noted that two equal masses, of 140 kg each can be attached at any two peaks or troughs (or
combination) of the #exural wave of the unloaded beam to give exactly the same e!ect of
a single mass.
To address the physical explanation of the behavior observed, one returns to the

investigation of the e!ect of the added mass. The added mass was treated as purely inertial
reaction acting as a control force (secondary force) with a magnitude dependant upon the
square of the driving frequency, the displacement amplitude at its location and the value of
the mass. Speci"cally, F

�
"m��= (b

�
). This secondary force creates a #exural wave that is

out of phase of the #exural wave generated by the external force (the primary force). As
a result, the sum of the two waves is zero at one side of the excitation force. This is depicted
in Figure 8. The dashed}dot}dashed line represents the #exural wave due to the added mass
given in Figure 6. This added mass corresponds to an inertial force F

�
"685)0118 N acting

at location 4)3436 m. The dashed line represents the #exural wave due to the primary force



Figure 7. Analytical displacement responses of the loaded and unloaded simply supported beam when
�"20 Hz, F

�
"1000 N, x

�
"10 m, m

�
"410 kg at b

�
"15)6564 m. **, Loaded; ------, unloaded; �, mass

location.
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F
�
"1000 N acting at x

�
"10 m. These two waves are 1803 out of phase in the right half of

the beam. Therefore, the mixing of the two waves results in destructive interference.
Comparable phenomena are encountered in noise cancellation by introducing opposing
sound sources [11].
Figure 9 depicts the dynamic response of the beam for intermediate frequency excitation

�"60 Hz. The excitation force acts at mid-span with an amplitude F
�
"1000 N. A single

mass of value 13)5 kg is attached at 8)525 m; which, corresponding to 4)25 �, is needed to
suppress the vibration in the right half of the beam. Instead one can use two masses each of
6)5 kg, or a set consisting of three masses of 4)33 kg each. Alternatively, a set consisting of
four masses each equals 3)25 kg can be used. In all these alternative choices, masses are
attached in the left half of the beam at peaks or troughs of the #exural wave of the unloaded
beam.
In Figure 10, the excitation frequency is relatively high, �"100 Hz. The excitation force

acts at the mid-span of the beamwith an amplitude of 1000 N. One needs to attach a 55)5 kg
mass at the left half to cancel the vibration in the right half of the beam. With regards to the
change of the location of the excitation force, Figure 11 indicates the transverse
displacements when the force acts at x

�
"6 m. For the unloaded beam, the vibrational

amplitude to the right of the force is more pronounced than that to the left of the force.
However, the attachment of 299 kg mass can shift all the vibrational energy to the left of the
force and leave the right region at rest position. The added mass appears to be relatively
large; however the mass ratio is 0)0734 which is acceptable for engineering applications.
Another interesting observation is that a similar e!ect can be obtained by using a spring



Figure 8. Analytical displacement responses of the loaded and unloaded simply supported beam when
�"20 Hz. ------, Unloaded with F

�
"1000 N, x

�
"10 m, } ) } ) }, unloaded; with F

�
"685)0118 N, x

�
"4)3436 m;

**, loaded with F
�
"1000 N, x

�
"10 m, m"410 kg at b

�
"15)6564 m; �, mass location.

Figure 9. Analytical displacement responses of the loaded and unloaded simply supported beam when �"60 Hz,
F
�
"1000 N, x

�
"10 m, m

�
"13)5 kg at b

�
"8)5265 m. **, Loaded; ------, unloaded; �, mass location.
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Figure 10. Analytical displacement responses of the loaded and unloaded simply supported beam when
�"100 Hz, F

�
"1000 N, x

�
"10 m, m

�
"55)5 kg at b

�
"8)1587 m. **, Loaded; ------, unloaded; �, mass

location.

Figure 11. Analytical displacement responses of the loaded and unloaded simply supported beam when
�"100 Hz, F

�
"1000 N, x

�
"6 m, m

�
"299 kg at b

�
"1)9425 m. **, Loaded; ------, unloaded; �, mass

location.
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Figure 12. Analytical displacement responses of loaded and unloaded simply supported beam when �"100 Hz,
F
�
"1000 N, x

�
"6 m, k"68MN/m at a

�
"6)4022 m. **, Loaded; ------, unloaded; �, spring location.

Figure 13. Analytical displacement responses of loaded and unloaded simply supported beam when
�"100 Hz, F

�
"1000 N, x

�
"10 m, k

�
"k

�
"80 MN/m, a

�
"8)1587 m, a

�
"11)8413 m.**, Loaded; ------,

unloaded; �, spring location.
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Figure 14. Analytical displacement responses of loaded and unloaded simply supported beam when
�"500 Hz, F

�
"1000 N, x

�
"10 m, mass set and locations from Figure 12 in reference [1].**, Loaded; ------,

unloaded; o, mass location.
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instead of a mass. In Figure 12, a spring of sti!ness 68 MN/m is attached at a
�
"6)4022 m,

which corresponds to 8)75� from the right end of the beam, and has a similar e!ect to a mass
in controlling the propagation of vibration.
To suppress the transverse displacement responses on both sides of the beam, two springs

with the same sti!ness k"80 MN/m are attached at a
�
"8)1587 m and a

�
"11)8413 m as

shown in Figure 13. The excitation force of 1000 N acts at the mid-span of the beam. This
"gure was chosen for a good reason. Very often, one is interested in controlling the
propagation of vibration in order to limit the vibration away from a source of mechanical
disturbance.
Finally, Figure 14 shows the simulation results for the data of Figure 13 in reference [1].

Kellite and Cheng used "ve unequally spaced masses, each 15)6464 kg, to minimize the
response on x"10}20 m with a 500 Hz driving force at mid-span. Their optimal mass
spacings, which were found by the principal axis optimization method, are found to be
1)9485, 5)51616, 7)8309, 9)2239 and 13)4211 m. In addition to a signi"cant vibration
reduction in comparison to their "gure because of the truncation of modes in their analysis,
inspection of Figure 14 shows that the "fth mass is redundant. Hence, one can get exactly
the same vibration suppression with only four masses. Furthermore, one can use a single
mass of value 42 kg located at any peak or trough in the left half of the beam and get exactly
the same e!ects.
Figure 15 shows the dynamic response of a 4 m long cantilevered beam excited at its tip

with an excitation force of 1000 N and 25 Hz excitation frequency. To suppress the
vibration amplitude throughout the beam span, a spring with sti!nessK"8 MN/m is "xed



Figure 15. Analytical displacement responses of loaded and unloaded cantilevered beam when ¸"4 m,
�"25 Hz, F

�
"1000 N, x

�
"4 m, k

�
"8 MN/m, a

�
"3)8851 m. **, Loaded; ------, unloaded, �, spring

location.
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at a distance a
�
"3)8851 m, which corresponds to 1)25�. In comparison to the response of

the unloaded beam, the displacement response of the spring-loaded beam indicates that
a signi"cant vibration reduction can be achieved.

5.1. OPTIMUM MASS RATIO

Consider again the simply supported beam from the previous section. The vibration
con"nement along the entire beam can be achieved near resonance conditions. Figure 16
depicts the displacement response of the simply supported beam at an excitation frequency
of 25)5054 Hz (near resonance) with a single attached mass of 50 kg located at one of the
peaks of the #exural wave of the unloaded beam (b

�
"5)3849 m). The mass ratio is 0.0123.

The optimummass ratio versus the excitation frequency, normalized with respect to the "rst
natural frequency of the beam �

�
"0)15094 Hz, is shown in Figure 17. The optimum mass

ratio is based on the minimum value of the attached mass required to achieve a signi"cant
vibration con"nement along the beam at each external excitation frequency near resonance.
Evidently, the force amplitude does not in#uence the suppressed displacement amplitude as
revealed by Figure 18.

5.2. DUAL-EXCITATION FORCES

In order to control the vibration amplitude in the middle region of the beam the only way
one can achieve this by imparting two identical excitation forces as shown in Figure 19. In



Figure 16. Analytical displacement responses of loaded and unloaded simply supported beam when �"25)504 Hz,
F
�
"1000 N, x

�
"10 m, m

�
"50 kg at b

�
"5)3849 m. **, Loaded; ------, unloaded; �, mass location.

Figure 17. Minimum mass required for optimum vibration suppression versus input excitation frequency (at
resonance).
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Figure 18. Suppressed vibration amplitude ratio versus excitation force when �"60 Hz, F
�
"1000 N,

x
�
"10 m, m

�
"13)5 kg at b

�
"8)5265 m, mass ratio"0)0033 (force normalized by m��¸).

Figure 19. Dual excitations: vibration suppression within the interior region of the beam when �"100 Hz,
m

�
"m

�
"299 kg, b

�
"3)4966 m, b

�
"16)5034 m. **, Loaded; ------, unloaded; �, mass location.
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this "gure the excitation forces act at b
�
"6 m and b

�
"14 m. The value of each force is

1000 N with a frequency of 100 Hz. The masses are 279 kg each and are attached at
b
�
"3)4966 m and b

�
"16)5034 m. The distance between the forces can be used to control

the segment length within which the vibration amplitude needs to be suppressed.
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The purpose of the foregoing presentation was to display the versatility of the approach
developed. Beams of various combinations of boundary conditions and Timoshenko-type
beams can be treated in a similar manner. Simply, the Green function G (x, u) in the
displacement expression is replaced by the proper one. Green functions for other
complicated boundary conditions are tabulated in reference [9], while Green functions for
Timoshenko-type beams are derived by Lueschen et al. [12].

6. CONCLUSION

In this investigation, a method based on the dynamic Green function has been proposed
to determine the optimum values of masses and/or springs and their locations on a beam
structure in order to suppress the vibration at an arbitrary location. The analytical
displacement response for the case of a simply supported beam is veri"ed experimentally
using a laser measuring system and yielded reasonable results. As case studies, the
vibrations of both simply supported and cantilevered beams can be controlled at an
arbitrary location within the beam with a minimum value of attached point masses or
springs. The optimum locations of the masses are found to be at peaks or troughs of the
#exural wave of the unloaded beam forced response.
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